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The sampling method proposed by Metropolis et al. (J. Chem. Phys. 21 (1953), 1087) 
requires the simulation of a Markov chain with a specified n as its stationary distribution. 
Hastings (Biometrika 57 (1970) 97) outlined a general procedure for constructing and 
simulating such a Markov chain. The matrix P = { pij\ of transition probabilities is 

constructed using a delined symmetric function s,, and an arbitrary transition matrix Q. With 
respect to asymptotic variance reduction, Peskun (Biometrika 60 (1973), 607) determined. for 
a given Q, the optimum choice for sij. Here. guidelines are given for choosing Q so that the 
resulting Markov chain sampling method is as precise as is practically possible. Examples 
illustrating the use of the guidelines, including potential applications to problems in statisticai 
mechanics and to the problem of estimating the probability of an event by simple “hit-or- 
miss” Monte Carlo in conjunction with Markov chain sampling, are discussed. 

1. INTRODUCTION 

Suppose we wish to evaluate the expectation 

I = E,(f) = t f(i) xi, 
i=O 

where we are assuming that 

(i) S is enormously large, so that the direct calculation of I by successive 
additions is prohibitively laborious; 

(ii) f(.) is a fixed non-constant function defined on 0, I,..., S; 

(iii) independent sampling from II = (no, n, ,..., ?rJ, a fixed probability 
distribution with zi > 0 for all i, is a most difficult or time-consuming or even 
impossible task. 

Although the statistical estimation of I on the basis of an independent sample drawn 
from I is ruled out by assumption (iii), estimation is still possible on the basis of a 
correlated sample. 

Let P = ( pi,i} be the transition matrix of an irreducible Markov chain with states 
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0, l,..., 5’ chosen so that x is its unique stationary distribution, i.e., R = nP. Simulate 
this Markov chain for times t = 1,2,..., N and use the estimate 

where X(t) denotes the state occupied by the process at time t and 

pr{X(t + 1) = j ] X(t) = i} = pij. 

For finite irreducible Markov chains we know that i is asymptotically normally 
distributed and that i-1 I in mean square as N--t co (cf. [ 1 I). 

Hastings [4] outlined a general procedure for constructing such a transition matrix 
P with z as its stationary distribution. We assume that pij has the form 

with 

Pij = qijaij (i f j), (1) 

Pii= l - C Pij, 
i#i 

where Q = {qii} is the transition matrix of an arbitrary irreducible Markov chain on 
the states 0, l,..., S and aij is given by 

aij = Sij/( 1 + tij), (2) 

where sij is a symmetric function of i and j chosen so that 0 < aij < 1 for all i and j, 
and tij = (niqij/njqji). With this form for pij it is readily verified that for all i and j 
the matrix P satisfies the reversibility condition 

71i pij = 71j Pji. (3) 

This condition ensures that Cf= ,, 7zi pij = rcj, for all j, and hence that TC is a stationary 
distribution of P. The irreducibility of P must be checked in each specific application. 
It is only necessary to check that there is a positive probability of going from state i 
to state j in some finite number of transitions, for all pairs of states i and j. 

In order to simulate this process we carry out the following steps for each time t: 

(a) assume that X(t) = i and select a statej using the distribution given by the ith 
row of Q; 

(b) take X(t + 1) = j with probability aii and X(t + 1) = i with probability 
1 - aij. 

From (1) and (2) we see that the symmetric function sij and the arbitrary tran- 
sition matrix Q determine the transition matrix P. In ,particular, we need only know 
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the zi’s up to a constant of proportionality, as is the case in many problems in 
statistical mechanics, since P is constructed so that it depends only on the ratios 
zi/7tj. The purpose of this paper is to determine guidelines for choosin 
estimate Î  is as precise as is practically possible. For a given choice of 
chain sampling method based on P was shown by Peskun [7] to be asymptotically as 
precise as possible for sij = sij (MI = 1 + min(t,, tji). We note that with a symmetric 
and s.. = #j”‘, we have the sampling method proposed by Metropolis et al. [6]. 51 

2. THE CHOICE OF THE ARBITRARY TRANSITION 

2.1. Asymptotic Variance Reduction 

For the reasons stated by Peskun [7], we shall confine our discussions to the 
precision, rather than the accuracy, of the estimate 1 Also, we shall assess the 
precision of the estimate Î  by its defined asymptotic variance ~(f, R, P), where 

v(f, 7~, P) = i”, Nvar f f {X(t)}/N A) fT, + 
f=l 

it being assumed that the sample size N is sufficiently large so that the error in the 
approximation var(fi % v(f, II, P)/N is small. In what follows, the matrix A = g” 
where g = (1, l,..., 1) and the inverse matrix Z = {I - (P - A)] - ’ will be called the 

matrix” and the “fundamental matrix,” respectively, for the finite 
chain determined by the transition matrix P whose stationary dis 
be the 1 x (S + 1) row vector f = {f (0), f(l),..., f (S)} and 

the (S + 1) X (S + 1) diagonal matrix with diagonal vector x, i.e., 6,, = xi 
(i = 8, l,..., S). 

= {pii} is an irreducible transition matrix satisfying the reversibili 
(3), then for fixed it and f, the asymptotic variance v(f, x 
can be considered to be a function of S(S + 1)/2 of 
restricted by certain constraints. In order to eliminate any questions as to whether the, 
S(S + 1)/2 off-diagonal elements of P are lower and/or upper, we shall find it very 
convenient to express the constraints as 

k-l 

Cl G C nj(Pkj/nj) + 5 ni(Pidnk) G ‘7 k = 0, I,..., s, 
j=O i=k+l 

0 < pij/~j < min( l/Xi, l/nj), O<j<i<S: 

where for all i and j, pijjrcj = pjijni, by the reversibility condition (3), and where 
C;Zi xj(Pvjnj) and Cy=s=k+ 1 ni(piJnk) are defined to be zero for k-7 0 and k = S, 
respectively. 
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For the (k, l)th off-diagonal element pk,, Peskun [7] showed that 

where all the elements of the matrix B(aZ-‘lap,,) = -B(aP/ap,,) are equal to zero 
except for the (I, I), (I, k), (k, I), and (k, k)th elements which are equal to nk, --nk, 
--7rk, and nk, respectively, and where the function g(.) is defined by gT = ZfT. 

Solving a{ v(f, 1z, P)}/3pkl = 0 f or all k and 1 (k > I), it necessarily follows that 
g(O)= g(l)= **a = g(S). That is, for some constant c, gT = ZfT = ccT, which in turn 
implies that fT = cZ-‘<~ = cST. But the function f(.) is assumed to be non-constant. 
Thus, it necessarily follows that for the class of transition matrices P satisfying the 
reversibility condition (3), the asymptotic variance v(f, n, P) is minimized by a P 
whose off-diagonal elements lie on the boundary of the S(S + 1)/2-dimensional 
region defined by the constraints (4). 

Peskun [7] also showed that if each of the irreducible transition matrices P, and P, 
satisfies the reversibility condition (3) for the same probability distribution n and if 
P, < P, (i.e., if each of the off-diagonal elements of P, is greater than or equal to the 
corresponding off-diagonal elements of P2), then for the estimate f = c;“= r f{X(t)}/N, 
u(f, rr, P,) < v(f, n, P2). This result permits us to be somewhat more specific as to 
where on the boundary of the S(S + 1)/2-dimensional region defined by the 
constraints (4), the off-diagonal elements of P must lie in order to minimize the 
asymptotic variance u(f, n, P). 

Suppose that an irreducible transition matrix P* satisfying the reversibility 
condition (3) and minimizing the asymptotic variance v(f, a, P) has at least two non- 
zero diagonal elements, two of them being pz and p$ (i # j), say. Now either 
(rrJnj) < 1 or (rcj/nJ < 1. For definiteness, let us assume that (71Jnj) < 1. We can 
increase in value the off-diagonal element p$ and simultaneously, because of the 
reversibility condition (3), the off-diagonal element p$ = (q/rj)p$ until at least one 
of the diagonal elements pg and p$ is zero. But then the asymptotic variance 
v(f, a, P) has either decreased or at least remained constant in value. Continuing in 
this manner we thus see that a transition matrix P* satisfying the reversibility 
condition (3) and minimizing the asymptotic variance v(f, Z, P) must necessarily, be 
of or can be reduced to, the form where it has at most one non-zero diagonal element. 

Intuitively, this makes sense, If, in general, the diagonal elements of an irreducible 
transition matrix P satisfying the reversibility condition (3) are small or zero, then 
the probability of remaining in any given state will be small or zero. This suggests an 
improvement in the sampling of all possible states which, in turn, suggests an 
improvement in the precision of the estimate f 

We shall now express the asymptotic variance v(f, II, P) of the estimate Î  in a form 
which will further indicate to us how we can best choose P to achieve a variance 
reduction. 

In general, for the fundamental matrix Z = {I - (P - A)}-‘, Kemeny and Snell [5] 
have shown that 
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Z=I+ lim 7 ’ n--i(p - A)‘, 
n-m lg n 

where I is the (S + 1) X (S + 1) identity matrix. In addition, if is not cyciic, then 

Z = I + g (P - A)‘, 
i=l 

where lim ,,(P - A)’ = 0, the (S + 1) X (S + 1) zero matrix. Since Markov chain 
sampling for the special case P = A is just independent sampling from a, we then 
have 

u(f, n, P) = v(f, IE, A) + 2fs(Z - I) f’, 

2, n-i =u(f,n,A)+2 ;iz ,& - flB(P - A)i f’, 
I=1 n 

= u(f, fb A) + 2 2 fB(P - A)i fT, for non-cyclic P, 
i=l 

where u(f, t, A) = fB(I - A) fr = J&o{f(i) -f(j)}” qnj/2 is the theoretical 
independent sampling- variance-of the estimate 1 for sample size N = 1~ From (5 ), we 
see that a first-order approximation to u(f, a, P) for either P cyclic or non-cyclic is 
given by 

u(f, IC, P) M u(f, n, A) + 2fB(P - A) fT, (61 

where fB(P - A) fT can be interpreted as a first-order covariance since if x is the 
distribution of the initial state X(O), then for any time t = 1, i,..., 

We thus see from (6) that Markov chain sampling will approximately be 
asymptotically as precise as or more precise than independent sampling if P is chosen 
so that fB(P - A) fr is non-positive. We shall now determine guidelines for choosing 

so that fs(P - A) fT is not only non-positive but is, as well, as iarge in absolute 
value as is practically possible. From the point of view of variance reduction, we see 
from (6) and (7) that this is nothing more than a crude attempt to induce negative 
correlation into the Markov chain method of sampling by trying to make the first- 
order covariance terms cov[f{X(t)J, f{X(t + l)]] (1= 1, 2,..., N - 1) in the formula 

non-positive and as large as possible in absolute value. 
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NOW from (6), (7), and the fact that JJ~j=o{~(i) -f(j)}‘XiPij= 2 Ci>j{f(i>- 
f(j)} * xi nj(PJnj)> we have 

v(f, 71, P) ,” 4 Z? {f(i) -f(.d}” xi5 - 2 C {f(i) -f(j)}’ ~i~j(Pi~/~j>, (8) 
i,j=O i>j 

where we note that the quantity Ci,j{f(i) -f(j)}’ ninj(pii/nj) is non-negative and 
linear in the elements pij/nj, 0 < j < i < S with corresponding non-negative coef- 
ficients {f(i) -f(j)}’ rcircj. From the approximation given in (8), we thus see that the 
problem of choosing P to achieve a reduction in variance of the estimate r^ is 
equivalent to, for example, the linear programming problem of maximizing the non- 
negative linear function Cf’>j{f(i) -f(j)}” nizj(pij/nj) whose S(S + 1)/2 variables 
pjj/zj (0 < j < i < S) are subject to the linear constraints given in (4). Though the 
solution to the linear programming problem is possible in theory, it is not in practice 
unless the number of states (S + 1) is not too large. But then we would not require 
Markov chain sampling since we could evaluate the expectation I = CTzof(i) Zi 
directly. 

Since we want our guidelines for choosing P not to be difficult to apply in practice, 
we see from our present discussion that they should be based on a feasible method of 
approximately solving the above-stated linear programming problem. To this end, we 
note that with respect to maximizing the non-negative quantity Ci,j{f(i) -f(j)}” 
zinj(pij/nj), the linear programming solution is such that as much weight as possible 
under the constraints given by (4) is given to those variables pij/nj whose 
corresponding non-negative coefficients {f(i) -f(j)}’ r+rcj are relatively large by 
sacrificing weight to those variables pij/zj whose corresponding non-negative coef- 
ficients {f(i) -f(j)}* ~~715 are relatively small. With this in mind, we initially suggest 
that P = {pij} be chosen such that for any i and j 

Pijlnj K {f(i) -.f(J?l” ninj* (9) 

In order to obtain a greater shift in weight from those variables Pij/~j whose 
corresponding non-negative coefficients {f(i) -f(j)}” 71i7tj are relatively small to 
those variables pij/zj whose corresponding non-negative coefficients {f(i) - 
f(j)}’ 7rinj are relatively large, we suggest as a second feasible method which might 
more closely approximate the linear programming solution that we choose 

where G(x) is a non-decreasing non-negative function defined for x > 0 such that 
G(0) = 0. We note that our choice of the function G(.) in (9) is linear, i.e., G(x) =x, 
x > 0. 

2.2. Guidelines for Choosing the Transition Matrix Q 

The Markov chain method of sampling proposed by Metropolis et al. [6] restricts 
the arbitrary irreducible transition matrix Q to being symmetric. Hastings [4] 
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generalized the sampling method and removed the restriction of symmetry. We shall 
now consider the asymmetry of Q. 

Suppose we wish to construct by Hastings’ method a particular irreducibie tran- 
sition matrix P* = jp$} which satisfies the reversibility condition (3). If we use the 
optimum symmetric function $’ and choose the arbitrary irreducible transition 
matrix Q = {sij} so that for each i and j (i > j) both the inequalities qij > p$ and 
qji > p$ are satisfied with at least one of them being an equality, then it follows that 

Wf) = p*, where pb”’ = { p$} denotes the irreducible transition matrix constructed 
aicording to (1) and (2) using sii = siy’ and the ch n Q. That is. there is a class of 
irreducibie transition matrices Q for which PL”!“’ = . Necessarily, we see that there 
is at least one such Q all of whose diagonal elements are equal to zero. There is 
another Q which satisfies the reversibility condition (3); namely. Q = P”. We also 
note that if the desired irreducible transition matrix P; has all its diagonal elements 

ual to zero, then the choice of the arbitrary transition matrix Q is unique and 
= P”; more generally, for each i such that pz = Or it necessarily follows that 

~~~ = P; for j = 0, I,..., S. 
ropping the superscript *, we see that, if the optimum symmetric function siy’ is 

used in Hastings construction procedure, then, in general, there is a close reiationship 
between an irreducible transition matrix P satisfying the reversibility condition (3) 
and its corresponding class of irreducible transition matrices Q where Pr’ = P. As a 
representative of this class, we make the special choice Q = P itself. Thus. from (9) 
and (lo), respectively, we suggest that the arbitrary transition matrix Q be chosen 
such that for any i and j 

or, more generally, 

qij/njE G[{f(i) -f(j)l’~i~jl~ (12) 

More specifically, since the ith row of Q must be a probability distribution, we 
suggest that for any i and j 

4ij= ci{f(i) -f(j)}2 ninj > (13) 

or, more generally, 

qij=cinjG[{f(i)--(j)!2 ninj]. (!4) 

where c;’ = CSZO {f(i) -f(j)}’ nircj’ in (13) and ci ’ = CTLO njG( {f(i) -f(J)\’ 
xi7cj] in (14) are “normalizing” constants depending on state i such that x;._ 0 qij = 1. 

With respect to these guidelines for choosing , we would like to make the 
following comments: 

(i) The guidelines are invariant under any changes in the numbering of the 
states and also under linear transformations of the functionf(.) for special choices of 
the function G(.), such as G(X) =x, x > 0. 
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(ii) In general, the choice of Q depends on both z andf(.) such that transitions 
from the current state i should be encouraged to states j of relatively high rcj and to 
states with values f(j) which differ greatly from the value f(i). This seems logical in 
terms of achieving a reduction in variance of the estimate i= Cy= r flX(t)}/N. 

(iii) As discussed in this section, we see that, in general, Q is asymmetric with 
zero diagonal elements and it approximately satisfies the reversibility condition (3) 
since (~iqii)/(~jqji) = cJcj z 1 when ci z cj. 

(iv) All of the row distributions of Q need not be computed in advance but only 
as they are required during a simulation. 

(v) For special choices of the function G(.), such as G(x) = x, x > 0, we need 
only know the rci)s up to a constant of proportionality. 

(vi) If i is the current state, the computation of the qij according to (14), for 
example, need not be carried out for all the statesj = 0, l,..., S but only a well-defined 
subset, such that Q is irreducible, with the normalizing constant ci appropriately 
modified. Such will be the case, for example, in statistical mechanical applications 
where the computation of qij according to (14) will only be practicable for the 
“accessible” states j, i.e., those states j which by computational considerations can be 
reached in a single transition from state i. In such a case, we note that, in general, 
some of the more important states j, i.e., those for which rcjG[ {f(i) --f(j)}* “i7Zj] is 
large, may not be included among the accessible states. Thus, the constructed Q may 
be somewhat or even substantially less than “optimum.” To improve matters, we 
shall now distinguish between “local” and “global” accessible states. With reference 
to a given state i, a state j is a local accessible state if with respect to computational 
considerations it can be reached in a single transition from state i. In contrast, a state 
j is a global accessible state if it is important in the sense that zjG[{f(i) --f(j)}’ ZiZj] 
is relatively large for almost all states i (i # j). We note that, in general, all global 
states will be local but not all local states will be global. For each state i, if we now 
include among its accessible states j both local and all global ones then the choice of 
Q according to (14) should be much improved. Since every state i will have all global 
states as accessible states then, in turn, each global state will have all states as 
accessible states. Thus, in practice, the computation, according to (14), of row 
distributions of Q corresponding to global states will not be feasible. As we shall 
illustrate and argue in Example 4, an appropriate choice of a global state row 
distribution may be the uniform distribution. 

2.3. Elementary Examples 

The purpose of the following examples is to illustrate that guidelines (13) and, 
more generally, (14), are useful and give some insight into how best to choose the 
transition matrix in Monte Carlo sampling methods using Markov chains; in 
particular, Example 4 illustrates how good these guidelines are as an approximate 
solution to the associated linear programming problem. By no means are these 



MONTE CARLO METHODS USING MARKOV CHAINS 235 

examples to be considered as illustrating the best possible Monte Carlo sol~tio 
the problems. 

EXAMPLE I. Hastings [4] points out that the Markov chain sampling method 
may be applied to continuous distributions II and we may use densities in place of %he 
corresponding probability mass functions. Suppose that we wish to estimate by 

arkov chain sampling the mean of the standard normal distribution, i.e., H = SF, 
x[ (exp(-x2/2)j/\/Z;r] dx = E,(f), where f(x) = x and n(x) = {exp(-x2/2~~/~~ for 

Let q(x, y) dy be the probability element for %he Markov process 
According to the guidelines (13), for example, we should choose 

4(x, Y) = c,(x - yY[exp{ 4x” -t WY2 )]/(271>“” 

= [2/1(2x2 + 1) fi)](x - y)’ exp(-y2) 

defined for ---a3 < y < co as the xth row distribution of 
We can easily show that the distribution q(x9 y> [2/{(2.2 + 1) fi](x -- y>” 

exp(-yZ) is bimodal with the major and minor modes occurring at y = ix - 
(x’ + 4)“‘]/2 and y = {x + (x2 + 4)““}/2, respectively, for x > 0, and vice versa for 
x < 0. We see then, that if at time t the process is in state X(t) = x which is re~at~vel~~ 

moved from 0, the distribution q(x, y) is such %hat for state X(t + 1) it gives 
weight to those states y which are relatively close to 0. With tespeet to 
ing a reduction in variance of the estimate r^= Cy= 1 Jf{X(t) i/N; this seems 

logical in view of the fact that E,(f) = 0. 
Independent sampling from the distribution 4(x, y) = [2/{ (2x2 + 1) $1 ](.x - y)’ 

exp(-y*) is itself another problem; however, we can easily sample from a mixture 
q/(x, y) of two triangular distributions which provides a good ap~roximat~~~ TV 
g(x, y)% More specifically, for x > 0, the major and minor triangular distr~b~t~Qns are 
centred at y = {x - (x” + 4)“*}/2 and y = {x + (x2 + 4)““)/2, respectively, with bases 
of length {(x” + 4)“’ + x} and {(x2 + 4)“” -x), respectively, and vice versa for 
x < 0; the mixture is such that the major triangular ~istrib~t~o~ is selected with 
~robab~~~ty approximately equal to either p, q(xx4 y) dy or f? q(x, y) dy depending 
on whether either x > 0 or x < 0. 

ions were carried out on an ITEL AS/6 7032 using %he above transition 
’ and the symmetric function s(x, y) = 1 + minjt(x, y), t(y, x)}, where 

1(x, y) = {X(X) 4(x5 y)]/{n( y) q( y, x)), Tables Ia-d give simulation results for initial 
states X(0) = 0, 1, 2, and 3, respectively. For each initial state X(0) there are 10 
rep&z&es each consisting of N = 1000 correlated ~bservati~~s~ To obtain an 
estimated standard error sf for the estimate i= cy= 1 f!X(l)]/N we divided each 
replicate of N= 1000 correlated observations into E = 25 blocks sf R = 40 

consecutive observations each. Denoting the mean of the ith block by 

ii= i f[X{(i- l)K + t)]/K, 
t=1 
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we used the estimated standard error 

sf= i (fj-f)2/{L(L- l))] ) 
[ 

l/2 

i=l 

as suggested by Hastings [4]. 
From Table I we observe that the results are similar for all four choices of the 

initial state X(O), and the estimated standard error s,- is more often than not smaller 
than 0.031, the theoretical standard error of the mean based on 1000 independent 
observations, indicating the achievement of a variance reduction. 

EXAMPLE 2. Suppose that we wish to estimate by Markov chain sampling the 
mean of an exponential distribution, i.e., I = J”? x[ {exp(-x/2)}/2] dx = E,(f), where 
f(x) = x and n(x) = {exp(-x/2)}/2, 0 < x < co, zero elsewhere. Here, x is asym- 
metric in contrast to A in Example 1. Let q(x, y) & be the probability element for the 
Markov process analogous to Q. According to the guidelines (13), for example, we 
should choose 

q(x, y) = c,(x - v>‘[exp{-(x + @)/2}]/8 = {l + (x - l)*l-‘(x - v>” ev(-u) 

defined for 0 < y < co, zero elsewhere, as the xth row distribution of Q where 
o<x<co. 

Independent sampling from the distribution q(x, y) = { 1 + (x - 1)2}-‘(x - y)’ 
exp(-v) can be achieved by expressing it as the following mixture of two 
distributions: q(x, Y) = a,q,(x, u> + (1 -a,> q2k ~4 where al = [2 ev(-x)/I1 + 
(x - l)‘}], ql(x, y) = {exp(x)/2}(x - J)’ exp(-y), 0 < x < y < co, zero elsewhere, 

TABLE I 

Estimated Mean i and Estimated Standard Error sf 

Replicates 

(a) i 0.041 0.019 -0.031 -0.002 -0.002 -0.014 -0.012 -0.015 -0.048 0.030 

G 0.020 0.028 0.027 0.019 0.022 0.030 0.021 0.024 0.021 0.028 

(b) 

(cl 

(4 

-0.032 0.03 1 0.003 0.002 0.018 0.029 0.019 -0.006 0.016 -0.001 
0.018 0.020 0.023 0.024 0.029 0.026 0.022 0.016 0.034 0.025 

0.007 -0.019 -0.008 0.017 0.008 0.018 0.029 -0.004 0.003 0.011 
0.025 0.027 0.030 0.022 0.020 0.025 0.029 0.031 0.025 0.017 

-0.039 0.043 -0.000 -0.009 -0.017 -0.024 0.033 -0.052 0.006 0.026 
0.029 0.037 0.016 0.018 0.032 0.021 0.021 0.026 0.018 0.016 

Note. Results of 40 Simulations with N= 1000 Correlated Observations Each. (a)X(O) = 0; 
(b) X(0) = 1; (c)X(O) = 2; (d) X(0) = 3. 
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and q&, y) = { 1 + (x - 1)’ - 2 exp(-x)}-‘(x - y)” exp(-y), 0 < y < & zero 
elsewhere. Independent sampling from ql(x, y) can be achieved by expressing y = 
w  +x, where w  has been sampled from the gamma distribution n’(w) = (~‘!2) 
exp(--w), 0 < w  < co, zero elsewhere, and independent sampling from q2(x, y) can be 
achieved by the rejection technique. 

As in Example 1, simulations were carried out on an TTEL AS/6 7032 using the 
above transition matrix Q and the symmetric function S(X, y) = 1 + min!t(x-, :I), 
t(y, x)), where t(x, y) = {z(x) 4(x, y))/{n(y) q(y, x)1. Tables Ha-e give simuiatiom 
results for initial states X(0) = 0.001, 2.0, 4.0, 6.0, and 8.0, respectively. For each 
initial state X(0) there are 10 replicates each consisting of N = IO00 correlated obse:- 
vations. The estimated standard error sf of the estimate Î = , f {x(t)i/lv was 
obtained as in Example 1. 

From Table II we observe that the results are similar for all five choices of the 
initial state X(O), and the estimated standard error sf is more often than not smaller 
than 0.063, the theoretical standard error of the mean based on 1000 independent 
observations, indicating the achievement of a variance reduction. 

EXAMPLE 3. Suppose that we wish to estimate the probability of an event E. 
pr@‘) = p, associated with a given probability distribution n = (zO, x1 ,...: ns). If we 
desire only a rough estimate, then “hit-or-miss” Monte Carlo may be appropriate. 
However, let us assume that it is very diffkult, if not impossible, to obtain an 
independent sample from R. This then is an ideal situation in which to use the 
Markov chain method of sampling. Even though hit-or-miss onte Carlo is the most 
inefficient of the accepted Monte Carlo sampling techniques, we shall see that for the 

TABLE II 

Estimated Mean 1 and Estimated Standard Error Si 

(4 

:b) 

Replicates 

1.988 1.931 1.899 1.961 1.941 1.911 1.907 2.042 2.004 2.036 
0.050 0.038 0.047 0.051 0.051 0.046 0.039 0.060 0.050 0.065 

2.017 1.968 1.962 2.066 1.979 2.087 2.240 2.011 2.037 1.942 
0.049 0.039 0.057 0.091 0.044 0.068 0.181 0.100 0.059 6.046 

(cl i 2.025 2.051 2.05 1 1.996 1.908 1.930 2.016 2.000 1.922 1.96’ 
si 0.054 0.078 0.073 0.057 0.042 0.039 0.065 0.033 0.043 0.047 

(4 i 2.116 2.050 2.011 2.280 2.029 2.038 1.972 1.949 1.933 1.938 
si 0.128 0.119 0.090 0.262 0.053 0.073 0.053 0.055 0.05 1 0.045 

ie) i 1.997 1.863 1.911 1.892 1.894 2.021 1.949 1.982 2.019 2.003 
si 0.066 0.058 0.043 0.042 0.055 0.077 0.052 0.059 0.086 2.100 

Note. Results of 50 Simulations with N = 1000 Correlated Observations Each. (a) X(0) = O.OOi ; 
(b) X(0) = 2; (c)X(O) = 4; (d) X(0) = 6; (e) X(0) = 8. 
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special case, p = $, it can be very precise when used in conjunction with Markov 
chain sampling. 

For notational convenience, suppose that we number the states so that E = 
{0, l,..., R} where R < S. Then the probability p = Cf=‘=, xi can be written as the 
expectation E,(f,) = Cf=, f,( ‘) I zi of the characteristic function f,(e) of the set E 
where 

f&j = 1, i E E, 

= 0, i c$ E. 

We now partition the limiting matrix A = c’lr into four components corresponding to 
the set of states E and its complement EC = {R + 1, R + 2 ,..., S}, i.e., 

A R+I,R+l A 
A= 

R+l,S-R 

A S-R,Rtl A S-R,S-R I- 
With respect to the general guidelines as stated in (14), suppose that we choose, for 

purposes of mathematical simplification, the non-decreasing function G(.) where 
G(0) = 0 and G(x) = 1 for x > 0. Thus, our choice of Q is 

Q= [pv:yR+l 
S R,R+I 

(l -;‘;‘“+LS-R], 
S R,S R 

where both OR+,,R+I and OS-,,,-, are zero matrices. Now, if 0 < p ,< i, then 

0 
p(M) = R+l,R+l (I-PI-%+I,s--R 

Q 
(I-p)-'AS-R,R+I I 'S-R,S-R ' 

where P,-R,,-R is a diagonal matrix with each diagonal element equal to 
(1 - 2p)/(l - p); if 4 ,< p < 1, then 

P 
p(M) = R+l,R+l P-~AR+I,s-R 

Q 
P-lAs--R,RtI 1 oS-R,S-R ' 

where 'R+l,R+I is a diagonal matrix with each diagonal element equal to (2p - 1)/p. 
For this choice of Q, we can show that 

v(f,, n, q,“‘> = P( 1 - P)( 1 - 2P), if O<p<+, 

= P(1 - P)(2P - 117 if i<p<l, 

where the asymptotic independent sampling variance v(f,, Z, A) =p(l - p). We thus 
have v(fE, II, Ph”“‘) < v(f,, n, A) for 0 < p < 1; in particular, for p = 4, we have 
U(f,) 9r, Ph+o) = 0. 
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An initial impression might be that our choice of is useless since the row 
distributions of Q are nothing more than the given robability distribution n 
conditioned to either the set of states E or EC. Thus, ~~k~v chain sampling using Q 
still requires, in effect, independent sampling from rz. In an actual simulation, our 
choice of Q will thus have to be modified but, as suggested above, it should be of the 
form 

where the row distributions of QR+l,S-R(QS--R,R+l) are identical, being equal to a 
distribution from which we can obtain an independent sample and which mimics the 
given distribution z conditioned to the set of states F(E). 

We note that our guidelines for choosing Q are similar to those for choosing a 
distribution x’ = (~‘0, n; ,..., a&) if we were going to use importance sampling to 
estimate p = CT=‘=, (zJz$) ni . A possible disadvantage of the estimate r^l = 
c;“= 1 FE IX(t) i 71 
estimate r^ = ~Nzx(J$Z!~~,l& 

using importance sampling in comparison to the 

t 1 E using Markov chain sam.pling is that, in practice. a few 
of the weights r+(r)/&(t) may be either extremely small or large. 

EXAMPLE 4. Let us consider a 16 state problem defined in terms of a two- 
imensional triangular Ising lattice consisting of a square array of four sites with 

each site occupied by a spin, or dipole, which is allowed only two orientations, %p” 
and ‘“down.” The ith configuration state of the lattice is represented by the quadruple 
Pi = {iui( I), bf(2), Pi(3), Pi(4)} (j = O, 1,***, 15) where the two-valued spin coordinate 
pi(r) denotes the orientation of the spin on the rth lattice site (r = 1,2,3,4) and takes 
the two values +I and -1. We shall assume that the spins on the four lattice sites 
interact only with their nearest neighbours of which there are six for each site if we 
impose periodic boundary conditions on the lattice. We shall further assume our 
lattice to be isotropic with a zero external magnetic field. Then, for the ith 
configuration state pi of the lattice, the total internal energy is defined as 

where the summation extends over all nearest-neighbour pairs of sites (r, S) and where 
J is the interaction energy between any two spins. The case J > 0 corresponds to 
ferromagnetism and the case J < 0 to antiferromagnetism. We shall consider oniy the 
case J > 0. 

For any given function f(.) of the 16 possible configuration states, its statistical 
mechanical Boltzmann expectation is defined by 
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where z = {q,, q ,..., q5} with 

7Lj = eXp{-En(/li)/kT} 
I 

exp{-En(flJkT} 
j=O 

is the Boltzmann probability distribution. Here, k is Boltzmann’s constant and T is 
the absolute temperature. For purposes of illustration and convenience, we shall 
assume that f(e) s En( .)/J and kT/J= 1 or 10. Also, we shall number the sixteen 
possible configuration states as in Table III where only the sign of the spin coor- 
dinates has been given. We note that the probability distribution-n is much more 
highly concentrated in the configuration states ,D, and ,ul for kT/J= 1 with no = 7~~ = 
0.4999875 than it is for kT/J= 10 with x0 = n, = 0.1779064. 

We shall now consider various irreducible Markov chains with states po,pu, ,...,,D,~ 
each of which corresponds to a Markov chain method of sampling from II that could 
be or has been used in practice when the number of configuration states pi is enor- 
mously large. Though our specific example is simple, the comparisons to be made 
among the various Markov chains and the conclusions to be drawn will be of 
pragmatic interest. 

The first Markov chain has PLY’ as its irreducible transition matrix where the 
irreducible transition matrix Q1 is obtained using the guidelines (13). Here, as in the 
previous examples, we just want to illustrate that the guidelines (13) do work though, 
unrealistically, we have assumed that each configuration state ,U~ has all configuration 

TABLE III 

Configuration States, Spin Coordinates, and Total Internal Energy of a 
Two-dimensional Triangular Ising Lattice Consisting of a Square Array of Four Sites 

Configuration 
state 

i &(l) 

Spin coordinates 

k(2) k(3) k(4) 
Energy 

Jw4)lJ = - 4 c,.s .4o-)Pui(S) 

‘0 
1 
2 
3 
4 
5 
6 
I 
8 
9 

10 
11 
12 
13 
14 
15 

- 
+ 
- 

- 
+ 
+ 
+ 

+ 
- 
+ 
- 
+ 
+ 
- 
- 
+ 
- 

+ 
+ 
- 
- 
+ 

+ 
- 
+ 
+ 
- 
+ 
- 
+ 
- 
- 
+ 
- 
+ 
- 
+ 
- 

-12 
-12 

0 
0 
0 
0 
0 
0 
0 
0 
4 
4 
4 
4 
4 
4 
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states as accessible states. From Table IV, we see that t transition matrix PM) is e, 
better than the independent sampling transition matrix in terms of asymptotic 
variance reduction 

The second Markov chain has Ph:’ as its irreducible transition matrix where the 
irreducible transition matrix Q, is obtained using the guidelines (13) in ~o~ju~~t~o~ 
with the assumption that each configuration state pi has eight accessible co~figu~ati~~ 
states ,u~ including itself obtained by systematically reversing the spins pi(r), pi(2)9 
pi, and Pi(J) in this order and then again. We note that we could ease the 
computational burden by assuming that each configuration state i”i has only five 
accessible configuration states pj including itself obtained by systematically reversing 
the spins ,u,U), fiu,(2), h:(3), and ,ui(4) in this order just once. In this manner, we can, 
in general, for a K x K square array of spins which permits 2K possible ~on~g~rati~~ 
states, associate with each configuration state ,L+ eifher 2K or K + 1 accessilole 
configuration states fij including itself. We note that each of the ~o~~~~ratio~ states 
pi (i = 3, 4, 7, 8, 11, 12, 13, 14) does not include the most important ~Qu~~~~ati~~ 
states, namely y, and ,u,, among its accessible states. Thus, as we noted in Section 2.3 
and can see from Table IV, the transition matrix hy’ is s~bsta~t~a~~y less than 
optimum, especially for the case kT/J = 1. 

The third Markov chain has Pht” as its irreducible transition matrix where the 
irreducible transition matrix Q3 = {#‘} is obtained using the guidelines (13) in 
conjunction with the assumption that each configuration state ,U~ has eight local 
accessible configuration states ,u~ including itself obtained by systematically reversing 
he vim &>, PQ), ~~(3)~ and ~~(4) in this order and then again, and in a 
each of the configuration states ,ui (i= 3, 4, 7, 8, 11, 12, 13, 14) has tw 
accessible configuration states, namely ,u~ and p,. We note that each of the 
configuration states ,D~ (i = 0, 1, 2, 5, 6, 9, 10, 15) already has ,D,, and ,+ as locai 
accessible configuration states. Now since every ~o~~guration state yi has pu, and 1, 

TABLE IV 

Asymptotic Sampling Variances v(f, II, P) of a Monte Carlo Estimate 
in a Statistical Mechanical Problem 

P kTjJ = 1 kTJJ= 10 

A 0.36253 x lo-* 0.43073 x lo2 
p(M) 

Ql 0.36251 x lo-' 0.14081 x lo2 
p&f) 

Qi 0.84286 x 10” 0.46145 x lo4 
p(M) 

Q3 0.36251 x lo-’ 0.15174x lo2 
p(M) 

Pf ’ 

0.25905 x 10-l 0.15501 x 10’ 

0.31513 x 10-z 0.65912~ lo2 

P6 0.37561x lo-* 0.47830X 102 

P, 0.36251x lo-* 0.10999 x IQ2 

581/40/2-6 
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as accessible configuration states then, in turn, each of the configuration states p,, and 
pu, has every configuration state ,u~ as an accessible state. Thus, in attempting to keep 
our example as realistic as possible, we note, as we discussed in Section 2.2, that the 
choices of row distributions according to the guidelines (13) for configuration states 
,u, and ,u~ are not feasible. However, in this example and possibly, in general, an 
appropriate choice of a global state row distribution is the uniform distribution. That 
is, q$’ = l/1.5, for j # 0 and similarly, q’,;’ = l/15, for j # 1. 

Now to see why such a choice of row distribution is appropriate, we note the 
following. In general, one reason why a state j may be global is because the 
corresponding probability rcj is relatively large. This is especially true in this example 
for kT/J = 1. Thus, the remaining non-global state probabilities rci (i # j) will be 
relatively small. Now consider the transition probability J$$ where state i is non- 
global and state j is global. We want pj$ = qii, where qij has been selected according 
to the guidelines (13) or more generally (14); otherwise, by (I), p$ = qijaij < qij. 
Now in order that ~$2 = qij we must have, as we noted in Section 2.2, qji >p$ = 
ni p$$/zj, i.e., qji/ni >&)/zj. Thus, if the non-global and global state probabilities 
rci and 7rj are relatively small and large, respectively, and if the uniform distribution 
qji = l/S (i # j) has been selected as the row distribution for global state j, then the 
chances are very good that qji/rci >> 1 whereas piJ$‘/zj < l/rtj. That is, the chances are 
very good that qji/ni >p@/nj. We see from Table IV that our argument seems to be 
borne out in that the transition matrix PLY’ is comparable to PLY’ with respect to 
asymptotic variance reduction. 

, The fourth Markov chain has PLY’ as its irreducible transition matrix where the 
irreducible transition matrix Q4 is such that a transition is made from the current 
configuration state pi to some other configuration state ,uj by choosing one of the 
spins pi(r), 1 < Y < 4, at random and reversing it. Here, each configuration state iui 
has five accessible configuration states ,uj including itself. We note that each of the 
configuration states pi, 10 < i < 15, does not include the most important 
configuration states ,uu, and ,uu, among its accessible states. Thus, as we noted in 
Section 2.2 and can see from Table IV, the transition matrix PLY) is less than 
optimum and, in particular, worse than the independent sampling transition matrix A 
in terms of asymptotic variance reduction. 

The fifth and sixth Markov chains correspond to those employed in the two Monte 
Carlo sampling methods compared by Cunningham and Meijer [2]. In contrast to the 
fourth Markov chain that we just described, these two Markov chains replace the 
random selection of a spin and its reversal by a systematic selection and reversal. 
More specifically, the irreducible transition matrices Pi and P,, of the fifth and sixth 
Markov chains, respectively, are defined as follows: P, = P$) P$) P$? P$’ and P6 = 

* Pgi P$ Pg Pgi, where Q, , 1 < Y < 4, is a reducible transitlion matrii co;responding 
to the reversal of the spin coordinate ,q.(r), 0 < i < 15, and P$ is constructed in 
exactly the same way as P$? except that the symmetric function Sij = SF’ = 1, first 
used by Flinn and McManui [3], is employed rather than sij = @). From Table IV, 
we see that with respect to asymptotic variance reduction, the transition matrices P, 
and P, are both comparable to but no better than the independent sampling transition 
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matrix A, and P, is slightly better than P,. This latter fact is consistent with the 
Monte Carlo study carried out by Cunningham and Meijer (21 and warrants fw-thx 
theoretical investigation because of the following reason. This example and the sk.nrcfy 
carried out by Cunningham and Meijer [2] seem to indicate that Sij = 8:;” is a better 
choice of symmetric function than is Sif = Safe’ in direct disagreement with the 
theoretical results of Peskun [7]. However, though P, and P, both have II as ,their 
unique stationary distribution, we note that they do not satisfy the reversi 
condition (3). Thus, P, and P, cannot be constructed according to ~ast~~~~s9 

edure upon which the theoretical results of Peskun [7] are based. 
ecalling the linear programming solution outlined in Section 2.1, we can 

explain why each of P, and P, is a “good” choice for an irreducible tra~s~t~o~ rn~tr~x 
= {pv} for this example, keeping in mind, though, that they both do not satisfy the 
versibility condition (3); in particular, we shah do so for the case IV/J = I e For 

2 < i < 15, 8 < j < 1 the non-negative coefficients {f(i) -f(j) i” ~~71~ are ~e~at~ve~~ 
large. Thus, the corresponding variables pij/Ej should be r~iat~ve~y large which in turn 
imply that the corresponding pij should be relatively large since ?r,, and x1 (x0 = x1> 
are relatively large. Also, for each i = 2, 3,..., 
{f(i) -ffl>l” zi711T 

15, we note that {f(i) -f(O)]” ~~71” = 
which finally implies th at least one of pi0 and piI ~ho~~~ be 

relatiye~y large. This is the case for both and P, where, in ~art~c~~ar~ Pij > 
9299730 for i= 2, 3, 4, 5, IO, 11, 12, j = 0 ind i = 6, 

We would like to make one final comment concernin 
methods used to construct them depend only on 11: and no 
depending on the function f (. ), such transition matrices may 
terms of the m ‘tude of their asymptotic variances. 

The seventh final Markov chain that we wish to consi 
~rred~~ibl~ transition matrix where P, has been co~st~~ted according to the linear 
progra ‘ng guidelines outlined in Section 2.1. Though we are not capable as yet 
give a retical proof, we feel that P, is an optimum choice of a tr~sitio~ matrix 
which satisfies the reversibility condition (3) and which minimizes the ~syrnptot~~ 
variance v(f, R, P). For the case kT/J= 1, we have pi;’ = e-12/2 for 0 < i < I, 
2 <j < 9; pc” = e-l612 for 0 < i < 1, 
&‘=pi:‘=$, 2<i< 15;p,, 

10 <j < 15; pi:’ =pl:y = 1 - 4e-” - 3e-16; 
(7’ = 0, otherwise. For this choice of 

elements are zero. Such a choice of P, but with poo 
3e-r6 would be equally good. An example would be ere the ~rred~~ib~e 
transition matrix , = {#‘} has uniform row distributions. In particular, 4:” = %/I5 

i=O,j#i a i=l, j#i; 4 1:) = 41:) = f , 2 < i < 15; q:j) = 0, 

rkov chain sampling, what could be more practicable than such a 

For 
pi;’ = e 

the case kT/J= 10, we have pc’ = (1 - 3e-“.@)/8 for 
-1.6/2 for 0 < i < 1, 10 <j < 15; pi,7” =pil’ = (1 - 3e-“.@j) e’. 

pj;’ = {l - 4(1 - 3e-‘.6) e1.2}/7 for 2 < i, j < 9, i # j; pji’ =&” = 4 
rwise. For this choice of P,, all the diagonal elements are zero. Such a 

but with CsZ2 pi;‘= 1 - 4(1 - 3e-“‘6) el.’ for 2 &i< 9 would be 
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3. CONCLUDING REMARKS 

We have given practical guidelines for choosing the transition matrix P in Monte 

Carlo sampling methods using Markov chains. Equally important, though, is the 
linear programming problem which we stated in Section 2.1 and upon which we 
based our practical guidelines. In practice, we will not be able to solve this problem 
but, in general relative terms, we know what the solution should look like. This 
general knowledge itself can be used as a guideline in determining whether a given 
transition matrix P will be suitable or not in a given Markov chain sampling problem. 
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